to the methyl ester obtained from Espeletia tenore. Reduction of IV with LiAlH₄ affords an alcohol which also shows in the NMR spectrum an AB quartet at 3.56 δ. Hydrogenation of III and IV with PtO₂ as a catalyst renders the same product, m.p. 77–79°. The IR spectra of both hydrogenated compounds are identical.

The relative amounts of (—)-kaur-16-en-19-oic and (—)-kaur-15-en-19-oic acid in each of the three species was determined by GLC^2 (2% XE-60 on silanyzed Chromosorb W, 190°, He at 40 ml/min). The areas under the peaks were measured and showed 25%, 20% and 25% of I in E. figureirasii, E. floccosa, and E. moritziana respectively E. floccosa exhibits the highest content of kaurenic acids (0·1%), E. figueirasii is also relatively rich (0·02%), but E. moritziana gave a very poor yield (0·001%). The life cycle of the plant could be responsible for this wide difference in kaurenic acids content, since E. floccosa was harvested at a budding stage while the other two were sterile when gathered.

¹ A. USUBILLAGA and A. MORALES, Rev. Latinoam. Quimica 1, 128 (1970).

² A. Usubillaga and K. DE Arocha, unpublished results.

Key Word Index-Espeletia spp.; Compositae; kaurenic acids.

Phytochemistry, 1972, Vol. 11, p. 1857. Pergamon Press. Printed in England.

FLAVONOIDS OF HELENIUM BREVIFOLIUM

H. WAGNER, M. A. IYENGAR and L. HÖRHAMMER

Institut für Pharmazeutische Arzneimittellehre der Universität München, Germany

and

W. HERZ

Department of Chemistry, Florida State University, Tallahassee, TH 32306, U.S.A.

(Received 7 December 1971)

Plant. Helenium brevifolium (Nutt.) A. Wood. Source. Collected by Dr. R. I. Godfrey, West of Tallahassee, Florida, Spring 1958. Previous work. Pseudoguaianolides from CHCl₃ extract.¹

Compounds isolated. After prior extraction with CHCl₃, vitexin, orientin and small quantities of swertisin and saponaretin were isolated from the methanolic extract of the aerial portion of the plant by the methods described in an earlier paper² and identified by direct comparison with authentic materials by m.m.p., co-chromatography (TLC, 3 solvents) and IR analysis.

Acknowledgement—This investigation was supported in part by U.S. Public Health Service (RG-GM-05814).

Key Word Index—Helenium brevifolium; Compositae; vitexin; orientin; swertisin; saponaietin.

W. HERZ, R. B. MITRA, K. RABINDRAN and W. A. ROHDE, J. Am. Chem. Soc. 81, 1481 (1959); W. HERZ, C. M. GAST and P. S. SUBRAMANIAM, J. Org. Chem. 33, 2780 (1968).

² H. WAGNER, M. A. IYENGAR, E. MICHAHELLES and W. HERZ, Phytochem. 10, 2547 (1971).